On gravity-wave scattering by non-secular changes in depth

By JOHN MILES
Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, University of California, San Diego, La Jolla, CA 92093-0225, USA

(Received 9 October 1997 and in revised form 10 May 1998)
The reflection of a straight-crested gravity wave by a non-secular perturbation $h_{1}(x)$ in depth relative to an otherwise flat bottom of depth h_{0} is calculated through an expansion in $\varepsilon \propto h_{1} / h_{0}$. Explicit results are developed up to second order for the sinusoidal patch $h_{1}=-b \sin (m \pi x / l), 0<x<l$, and reduced for Bragg resonance. Trapped modes are absent at first order but appear at second order and contribute $O\left(\varepsilon^{2}\right) / O\left(\varepsilon^{3}\right)$ to the maximum (Bragg-resonant) reflection coefficient for odd/even m. A third-order approximation that includes the dominant contributions of the third-order components of the resonant peak of the reflection coefficient for large m, but neglects the trapped modes, predicts resonant peaks that agree with the values measured by Davies \& Heathershaw (1984).

1. Introduction

Linear gravity waves of velocity potential ϕ, free-surface displacement ζ and frequency ω in water of ambient depth $h(x)$ are described by

$$
\begin{equation*}
[\phi(x, z, t), \zeta(x, t)]=\operatorname{Re}\left\{[\Phi(x, z), \mathrm{i}(\omega / g) \Phi(x, 0)] \mathrm{e}^{-\mathrm{i} \omega t}\right\} \tag{1.1}
\end{equation*}
$$

where the complex potential Φ satisfies

$$
\begin{gather*}
\nabla^{2} \Phi+\Phi_{z z}=0 \quad(-h<z<0), \tag{1.2}\\
\Phi_{z}=\kappa \Phi \quad(z=0), \quad \Phi_{z}+\nabla h \cdot \nabla \Phi=0 \quad(z=-h), \tag{1.3a,b}\\
x \equiv(x, y), \quad \nabla \equiv\left(\partial_{x}, \partial_{y}\right), \quad \kappa \equiv \omega^{2} / g \tag{1.4a-c}
\end{gather*}
$$

and subscripts signify partial differentiation. We seek the solution of (1.2)-(1.4) for

$$
\begin{equation*}
h(x)=h_{0}+h_{1}(x) \quad(0<x<l), \quad h_{1}=0 \quad \text { in } \quad x \leqslant 0 \quad \text { or } \quad x \geqslant l, \quad h_{1} / h_{0}=O(\varepsilon), \tag{1.5a-c}
\end{equation*}
$$

through the expansion ($\partial_{y}=0$ throughout the subsequent development)

$$
\begin{equation*}
\Phi=\Phi_{0}+\Phi_{1}+\Phi_{2}+\cdots, \quad \Phi_{n}=\Phi_{n}(x, z)=O\left(\varepsilon^{n}\right) \tag{1.6a,b}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{0}=\mathrm{e}^{\mathrm{i} k_{0} x} \cosh \left[k_{0}\left(z+h_{0}\right)\right] \tag{1.7}
\end{equation*}
$$

describes a straight-crested incident wave in water of uniform depth h_{0}. The wavenumber k_{0} is the positive-real root of the dispersion equation

$$
\begin{equation*}
k \tanh k h_{0}=\kappa \tag{1.8}
\end{equation*}
$$

The solution of (1.2)-(1.7) comprises a family of trapped modes, which are
evanescent for $|x| \quad h_{0}$, and a propagated mode of wavenumber k_{0} with incident, reflected and transmitted components. The latter yield the asymptotic approximations

$$
\begin{gather*}
\Phi(x, z) \sim\left(\mathrm{e}^{\mathrm{i} k_{0} x}+R \mathrm{e}^{-\mathrm{i} k_{0} x}\right) \cosh \left[k_{0}\left(z+h_{0}\right)\right] \quad\left(x / h_{0} \downarrow-\infty\right) \tag{1.9a}\\
\Phi(x, z) \sim T \mathrm{e}^{\mathrm{i} k_{0} x} \cosh \left[k_{0}\left(z+h_{0}\right)\right] \quad\left(x / h_{0} \uparrow \infty\right), \tag{1.9b}
\end{gather*}
$$

and
wherein the reflection and transmission coefficients R and T admit the expansions

$$
R=R_{1}+R_{2}+\cdots, \quad T=1+T_{1}+T_{2} \cdots, \quad R_{n}, T_{n}=O\left(\varepsilon^{n}\right) . \quad(1.10 a-c)
$$

The first-order (truncation at $n=1$) problem has been solved by Long (1973) for random $h_{1}(\boldsymbol{x})$ and by Davies \& Heathershaw (1984) for arbitrary $h_{1}(x)$; see also Mei (1985) and Kirby (1986). Davies \& Heathershaw (1984) compare their solution with measurements for a sinusoidal ripple bed and find that it is adequate for reflection coefficients smaller than about 0.5 but may overestimate reflection for Bragg resonance. They introduce an ad hoc 'correction' to represent higher-order effects, but this is superseded by more accurate calculations (Davies, Guazzelli \& Belzons 1989; O'Hare \& Davies 1992).

I consider here the construction of higher-order approximations and the contributions of the trapped modes. In §2, I obtain (through Fourier transformation) a sequential solution of the boundary-value problems for the Φ_{n}. In §3, I calculate the corresponding reflection and transmission coefficients to second order and then, in §4, consider the example of a sinusoidal patch, $h=h_{0}-b \sin \beta x(0 \leqslant x \leqslant l), \beta=m \pi / l$. The second-order approximation may be inadequate for Bragg resonance $\left(2 k_{0}=\beta\right)$ if m is large and even (in which case R_{2} proves to be approximately in quadrature, whereas R_{3} is approximately in phase, with R_{1}), and in $\S 5$ I develop a third-order approximation to the Bragg-resonant reflection coefficient that is adequate for $m b / 2 h_{0}=O(1)$ and agrees well with Davies \& Heathershaw's (1984) measured resonant peaks for $m=4$, 8 and 20 (2,4 and 10 in their notation).

Nonlinearity would alter the linear approximation to R by $A \equiv 1+O\left(k_{0}^{2} a^{2}\right)$, where a is the amplitude of the incident wave. This factor must be compared with $R_{3} / R_{1}=$ $1+O\left(\varepsilon^{2}\right)$ for the present (§5) approximation to the Bragg reflection coefficient, which therefore appears to require $\left(k_{0} a / \varepsilon\right)^{2} \quad 1$ for its validity; however, the coefficient of $k_{0}^{2} a^{2}$ in A presumably is much smaller than that of ε^{2} in R_{3} / R_{1}.

The present approximation, in which the expansion parameter is a measure of the variation in depth, may be compared with the mild-slope (Mei 1983, §3.5) and modified mild-slope approximations (Chamberlain \& Porter 1995; Miles \& Chamberlain 1998), in which the expansion parameter is a measure of the bottom slope. See O'Hare \& Davies (1992) and Suh, Lee \& Park (1997) for more extensive lists of references. The present approximation is somewhat simpler, and may be more efficient, than these mild-slope approximations; however, it does not accommodate secular changes in depth, is less efficient than Mei's (1985) asymptotic approximation for a long ($m \quad 1$) ripple bed, and is less powerful than some of the more sophisticated methods cited by O'Hare \& Davies (1992) and Suh et al. (1997).

2. Fourier-transform solution

Substituting (1.6) into (1.2), (1.3a) and the expansion of (1.3b) about $z=-h_{0}$, we obtain the sequence (for $n=1,2, \cdots$)

$$
\begin{gather*}
\Phi_{n x x}+\Phi_{n z z}=0 \quad\left(-h_{0}<z<0\right) \tag{2.1}\\
\Phi_{n z}=\kappa \Phi_{n} \quad(z=0), \quad \Phi_{n z}=-Q_{n x} \quad\left(z=-h_{0}\right) \tag{2.2a,b}
\end{gather*}
$$

where

$$
\left.\begin{array}{c}
Q_{1}=h_{1} \Phi_{0 x}, \quad Q_{2}=h_{1} \Phi_{1 x}-\frac{1}{2} h_{1}^{2} \Phi_{0 x z}, \\
Q_{3}=h_{1} \Phi_{2 x}-\frac{1}{2} h_{1}^{2} \Phi_{1 x z}+\frac{1}{6} h_{1}^{3} \Phi_{0 x z z} \cdots \quad\left(z=-h_{0}\right) . \tag{2.3}
\end{array}\right\}
$$

The Φ_{n} then may be determined sequentially, starting from (1.7) for Φ_{0}.
Guided by Havelock's $(1929, \S 5)$ treatment of surface-forced gravity waves, we construct the solution of the bottom-forcing problem (in which the $Q_{n}(x)$ may be regarded as fluid inputs) posed by (2.1) and (2.2) through the finite Fourier-transform pair

$$
\begin{equation*}
\Psi(x, k)=\int_{-h_{0}}^{0} \Phi(x, z) \cos \left[\mathrm{i} k\left(z+h_{0}\right)\right] \mathrm{d} z \tag{2.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi(x, z)=2 \sum_{k} K(k) \Psi(x, k) \cos \left[i k\left(z+h_{0}\right)\right] \tag{2.4b}
\end{equation*}
$$

where

$$
\begin{equation*}
K(k)=\frac{k^{2}-\kappa^{2}}{\left(k^{2}-\kappa^{2}\right) h_{0}+\kappa} \tag{2.5}
\end{equation*}
$$

and the summation is over the positive-real root k_{0} and the infinite, discrete set of positive-imaginary roots, $k=i k$, of (1.8). Transforming (2.1), reducing the transform of $\Phi_{n z z}$ through integration by parts, and invoking $(2.2 a, b)$, we obtain

$$
\begin{equation*}
\Psi_{n x x}+k^{2} \Psi_{n}=-Q_{n}^{\prime}(x) \tag{2.6}
\end{equation*}
$$

the solution of which, subject to finiteness and radiation conditions for $x \rightarrow \pm \infty$, is given by (recall that $Q_{n}=0$ outside of $0<x<l$)

$$
\begin{equation*}
\Psi_{n}(x, k)=-\frac{1}{2}(\mathrm{i} k)^{-1} \int_{0}^{l} Q_{n}^{\prime}(\xi) \mathrm{e}^{\mathrm{i} k|x-\xi|} \mathrm{d} \xi \tag{2.7}
\end{equation*}
$$

We cast the inverse transform of Ψ_{n}, as determined by $(2.4 b)$, in the Green'sfunction form

$$
\begin{align*}
\Phi_{n}(x, z) & =\int_{0}^{l} G(x-\xi, z) Q_{n}^{\prime}(\xi) \mathrm{d} \xi \tag{2.8a}\\
& =\partial_{x} \int_{0}^{l} G(x-\xi, z) Q_{n}(\xi) \mathrm{d} \xi \tag{2.8b}
\end{align*}
$$

where $(2.8 b)$ follows from ($2.8 a$) through integration by parts and the invocation of $Q_{n}(0)=Q_{n}(l)=0\left(\right.$ which follow from $\left.h_{1}(0)=h_{1}(l)=0\right)$,

$$
\begin{align*}
G(x, z) & =-\sum_{k}(\mathrm{i} k)^{-1} K(k) \mathrm{e}^{\mathrm{i} k|x|} \cos \left[\mathrm{i} k\left(z+h_{0}\right)\right] \tag{2.9a}\\
& =-\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \mathrm{e}^{\mathrm{i} k_{0}|x|} \cosh \left[k_{0}\left(z+h_{0}\right)\right]+\sum_{k} \ell^{-1} K(\mathrm{i} k) \mathrm{e}^{-k|x|} \cos \left[k\left(z+h_{0}\right)\right], \tag{2.9b}
\end{align*}
$$

and $K_{0} \equiv K\left(k_{0}\right)$. The k summation comprises the trapped modes, which are evanescent for $|x| \quad h_{0}$. The k_{0} term represents the propagated mode, and the comparison of its asymptotes (for $x \rightarrow \mp \infty$) with $(1.9 a, b)$ yields

$$
\begin{equation*}
R_{n}=K_{0} \int_{0}^{l} Q_{n}(x) \mathrm{e}^{\mathrm{i} k_{0} x} \mathrm{~d} x, \quad T_{n}=-K_{0} \int_{0}^{l} Q_{n}(x) \mathrm{e}^{-\mathrm{i} k_{0} x} \mathrm{~d} x \tag{2.10a,b}
\end{equation*}
$$

3. Second-order results

Proceeding through the sequence developed in §2, starting from the substitution of Φ_{0} (1.7) into (2.3), and setting $z=-h_{0}$, we obtain

$$
\begin{gather*}
Q_{1}(x)=\mathrm{i} k_{0} h_{1}(x) \mathrm{e}^{\mathrm{i} k_{0} x}, \tag{3.1}\\
R_{1}=\mathrm{i} k_{0} K_{0} \int_{0}^{l} h_{1}(x) \mathrm{e}^{2 \mathrm{i} k_{0} x} \mathrm{~d} x, \quad T_{1}=-\mathrm{i} k_{0} K_{0} \int_{0}^{l} h_{1}(x) \mathrm{d} x, \tag{3.2a,b}\\
Q_{2}(x)=h_{1}(x) \partial_{x} \int_{0}^{l} G(x-\xi) Q_{1}^{\prime}(\xi) \mathrm{d} \xi, \tag{3.3}\\
R_{2}=\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} Q_{1}(x) \mathrm{d} x \partial_{x} \int_{0}^{l} G(x-\xi) Q_{1}^{\prime}(\xi) \mathrm{d} \xi \tag{3.4a}\\
=-\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} \int_{0}^{l} G(x-\xi) Q_{1}^{\prime}(x) Q_{1}^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} x \tag{3.4b}\\
=-2\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} Q_{1}^{\prime}(x) \mathrm{d} x \int_{0}^{x} G(x-\xi) Q_{1}^{\prime}(\xi) \mathrm{d} \xi, \tag{3.4c}\\
T_{2}=\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} \bar{Q}_{1}(x) \mathrm{d} x \partial_{x} \int_{0}^{l} G(x-\xi) Q_{1}^{\prime}(\xi) \mathrm{d} \xi \tag{3.5a}\\
=-\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} \int_{0}^{l} G(x-\xi) \bar{Q}_{1}^{\prime}(x) Q_{1}^{\prime}(\xi) \mathrm{d} \xi \mathrm{~d} x \tag{3.5b}\\
=-\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} \mathrm{~d} x \int_{0}^{x} G(x-\xi)\left[Q_{1}^{\prime}(x) \bar{Q}_{1}^{\prime}(\xi)+\bar{Q}_{1}^{\prime}(x) Q_{1}^{\prime}(\xi)\right] \mathrm{d} \xi, \tag{3.5c}
\end{gather*}
$$

wherein $Q_{1}(0)=Q_{1}(l)=0$ has been invoked after the partial integrations, the reduction of (3.4b) to (3.4c) follows from the identity $G(x-\xi)=G(\xi-x)$, and \bar{Q}_{1} is the complexconjugate of $Q_{1} ; Q_{3}$ and R_{3} are given in the Appendix.

4. Sinusoidal patch

Consider, for example,

$$
\begin{equation*}
h_{1}=-b \sin \beta x \quad(0<x<l), \quad \beta l=m \pi \tag{4.1a,b}
\end{equation*}
$$

(m is a positive integer), the substitution of which into (3.2) and (3.4) yields

$$
\begin{equation*}
R_{1}=\mathrm{i} \varepsilon k_{0} \beta\left(\frac{\mathrm{e}^{2 i k_{0} l} \cos \beta l-1}{\beta^{2}-4 k_{0}^{2}}\right) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=2 \mathrm{i} \Sigma^{2}\left(k_{0} / K_{0}\right) \sum_{k} K(k) H\left(\beta, k, k_{0}\right), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon \equiv K_{0} b=b /\left[h_{0}+\left(2 k_{0}\right)^{-1} \sinh 2 k_{0} h_{0}\right], \tag{4.4}
\end{equation*}
$$

$$
\begin{align*}
H & =(\mathrm{i} k)^{-1} \int_{0}^{l} \mathrm{e}^{\mathrm{i} k x}\left(\mathrm{e}^{\mathrm{i} k_{0} x} \sin \beta x\right)^{\prime} \mathrm{d} x \int_{0}^{x} \mathrm{e}^{-\mathrm{i} k \xi}\left(\mathrm{e}^{\mathrm{i} k_{0} \xi} \sin \beta \xi\right)^{\prime} \mathrm{d} \xi \tag{4.5a}\\
& =\int_{0}^{l} \mathrm{e}^{\mathrm{i} k x}\left(\mathrm{e}^{\mathrm{i} k_{0} x} \sin \beta x\right)^{\prime} \mathrm{d} x\left[(\mathrm{i} k)^{-1} \mathrm{e}^{-\mathrm{i} k x}\left(\mathrm{e}^{\mathrm{i} k_{0} x} \sin \beta x\right)+\int_{0}^{x} \mathrm{e}^{\mathrm{i}\left(k_{0}-k\right) \xi} \sin \beta \xi \mathrm{d} \xi\right] \tag{4.5b}
\end{align*}
$$

$$
\begin{align*}
= & \int_{0}^{l} \mathrm{e}^{\mathrm{i}\left(k_{0}+k\right) x}\left(\mathrm{i} k_{0} \sin \beta x+\beta \cos \beta x\right) \mathrm{d} x \int_{0}^{x} \mathrm{e}^{\mathrm{i}\left(k_{0}-k\right) \xi} \sin \beta \xi \mathrm{d} \xi \tag{4.5c}\\
= & \beta^{2}\left[\beta^{2}-\left(k-k_{0}\right)^{2}\right]^{-1}\left\{\frac{1}{4}\left(\mathrm{i} k_{0}\right)^{-1}\left(1-\mathrm{e}^{2 \mathrm{i} k_{0} l}\right)\right. \\
& \left.+\mathrm{i} k\left[\beta^{2}-\left(k+k_{0}\right)^{2}\right]^{-1}\left[\mathrm{e}^{\mathrm{i}\left(k+k_{0}\right) l} \cos \beta l-1\right]\right\}, \tag{4.5d}
\end{align*}
$$

and we have invoked $\sin \beta l=0$ and $\cos 2 \beta l=1$. Substituting (4.5d) into (4.3), separating the propagated $\left(k=k_{0}\right)$ and trapped ($k=i k$) terms, and invoking (4.2), we obtain

$$
\begin{equation*}
R_{2}=2 \mathrm{i} \varepsilon\left(k_{0} / \beta\right) R_{1}+\frac{1}{2} \varepsilon^{2}\left(1-e^{2 \mathrm{i} k_{0} l}\right)+R_{2 k} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{align*}
R_{2 k} & =\frac{1}{2} \varepsilon^{2}\left(\beta^{2} / K_{0}\right) \sum_{k} K(\mathrm{i} k)\left\{\frac{1-\mathrm{e}^{2 \mathrm{i} k_{0} l}}{\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}}+\frac{4 \mathrm{i} k_{0} k\left[1-\mathrm{e}^{-k l+\mathrm{i} k_{0} l} \cos \beta l\right]}{\left|\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}\right|^{2}}\right\} . \tag{4.7a}\\
& =\varepsilon^{2}\left(\beta^{2} / K_{0}\right) \mathrm{e}^{\mathrm{i}\left(k_{0} l-\pi / 2\right)} \operatorname{Im} \sum_{k} K(\mathrm{i} k)\left[\frac{\mathrm{e}^{\mathrm{i} k_{0} l}-\mathrm{e}^{-k l} \cos \beta l}{\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}}\right] \tag{4.7b}
\end{align*}
$$

and (4.7b) follows from (4.7a) through the identity

$$
\begin{equation*}
\frac{4 \mathrm{i} k_{0} k}{\left|\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}\right|^{2}}=\frac{1}{\beta^{2}+\left(k-\mathrm{i} k_{0}\right)^{2}}-\frac{1}{\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}} \tag{4.8}
\end{equation*}
$$

and the reality of

$$
\begin{equation*}
K(i k)=\left(k^{2}+\kappa^{2}\right) /\left[\left(k^{2}+\kappa^{2}\right) h_{0}-\kappa\right] . \tag{4.9}
\end{equation*}
$$

The series in $(4.7 b)$ may be summed by invoking the rigid-lid approximations $k \simeq s \pi / h_{0}(s=1,2, \cdots)$ and $K(i k) \simeq 1 / h_{0}$ for the trapped modes and neglecting the exponentially small terms to obtain

$$
\begin{align*}
R_{2 \ell} & =\varepsilon^{2}\left(\beta^{2} / K_{0}\right) \mathrm{e}^{\mathrm{i}\left(k_{0} l-\pi / 2\right)} \operatorname{Im}\left(\mathrm{e}^{\mathrm{i} k_{0} l} S\right), \tag{4.10a}\\
S & \equiv \sum_{k} \frac{K(\mathrm{i} k)}{\beta^{2}+\left(k+\mathrm{i} k_{0}\right)^{2}}=\frac{1}{2 \mathrm{i} \pi \beta} \sum_{s=1}^{\infty}\left[\frac{1}{s+\mathrm{i}\left(h_{0} / \pi\right)\left(k_{0}-\beta\right)}-\frac{1}{s+\mathrm{i}\left(h_{0} / \pi\right)\left(k_{0}+\beta\right)}\right] \\
& =(2 \mathrm{i} \pi \beta)^{-1}\left\{\psi\left[1+\mathrm{i}\left(h_{0} / \pi\right)\left(k_{0}+\beta\right)\right]-\psi\left[1+\mathrm{i}\left(h_{0} / \pi\right)\left(k_{0}-\beta\right)\right]\right\}, \tag{4.10b}
\end{align*}
$$

where ψ is the digamma function (Abramowitz \& Stegun 1964, hereinafter referred to as AS, §6.3).

5. Bragg resonance

Bragg resonance occurs for $k_{0} l=\frac{1}{2} \beta l=\frac{1}{2} m \pi$, for which (4.2) and (4.6) reduce to

$$
\begin{equation*}
R_{1}=\frac{1}{4} m \pi \varepsilon, \quad R_{2}=\left(\sin ^{2} \frac{1}{2} m \pi+\frac{1}{4} \mathrm{i} m \pi\right) \varepsilon^{2}+R_{2 k} \tag{5.1a,b}
\end{equation*}
$$

and the approximation (4.10) yields

$$
\begin{align*}
R_{2 \hbar} & =\frac{1}{2} \mathrm{i}^{m-1} m \varepsilon^{2}\left(K_{0} l\right)^{-1} \operatorname{Im}\left\{\mathrm{i}^{m-1}\left[\psi\left(1+\mathrm{i}\left(m+\frac{1}{2}\right) \frac{h_{0}}{l}\right)-\psi\left(1-\mathrm{i}\left(m-\frac{1}{2}\right) \frac{h_{0}}{l}\right)\right]\right\} \tag{5.2a}\\
& =\mathrm{i}^{m-1} \varepsilon^{2}\left(\mu_{0} / \pi\right) \operatorname{Im}\left\{\mathrm{i}^{m-1}\left[\psi\left(1+\mathrm{i} \mu_{+}\right)-\psi\left(1-\mathrm{i} \mu_{-}\right)\right]\right\}, \tag{5.2b}
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{0} \equiv k_{0} / K_{0}=k_{0} h_{0}+\frac{1}{2} \sinh 2 k_{0} h_{0}, \quad \mu_{ \pm} \equiv\left(\frac{2 m \pm 1}{m \pi}\right) k_{0} h_{0} \tag{5.3a,b}
\end{equation*}
$$

Letting m be either odd or even and invoking AS, $\S 6.3$ (13) and (17), we obtain

$$
\begin{equation*}
R_{2 \hbar}=\frac{1}{2} \varepsilon^{2} \mu_{0}\left[\operatorname{coth}\left(\pi \mu_{+}\right)+\operatorname{coth}\left(\pi \mu_{-}\right)-\left(\pi \mu_{+}\right)^{-1}-\left(\pi \mu_{-}\right)^{-1}\right] \quad(\text { modd }) \tag{5.4a}
\end{equation*}
$$

m	1	4	8	20
b / h_{0}	$\frac{1}{3}$	0.320	0.320	0.160
$k_{0} h_{0}$	0.153	0.491	0.491	0.982
ε	0.120	0.464	0.148	0.058
$R_{1}(5.1 a)$	0.0077	$O\left(10^{-4}\right)$	$O\left(10^{-4}\right)$	0.904
$R_{2 \ell}(5.4)$	$\left.0.031+\mathrm{i} 90^{-4}\right)$			
$R_{2}(5.1 b)$	0.069 i	0.138 i	0.052 i	
$\left\|R_{1}+R_{2}\right\|$	0.152	0.469	0.937	0.906
$\left\|R_{1}+R_{2}+R_{3}\right\|(5.9)$	0.155	0.446	0.746	0.670
$\tanh R_{1}$	0.119	0.433	0.729	0.718
$\|R\|_{D H}$	-	0.45	0.72	0.68
$\left(k_{0} a\right)_{D H}$	-	0.027	0.027	0.054

Table 1. Peak reflection coefficient for the sinusoidal patch (4.1), as calculated in $\S 5$ and measured by Davies \& Heathershaw (1984) (DH).
or $\quad R_{2 \kappa}=\mathrm{i} \varepsilon^{2}\left(\mu_{0} / \pi\right)\left(\mu_{+}^{2}-\mu_{-}^{2}\right) \sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+\mu_{+}^{2}\right)\left(n^{2}+\mu_{-}^{2}\right)} \quad(\mu$ even $)$.
It follows from (5.1) and (5.4) that if m is even R_{2} is in quadrature with R_{1} and therefore contributes only $O\left(\varepsilon^{3}\right)$ to $|R|$. But if m is odd R_{2} has an in-phase (with R_{1}) component and contributes $O\left(\varepsilon^{2}\right)$ to $|R|$.

The second-order approximation described by (5.1)-(5.4) is adequate for $m \varepsilon 1$. The simplest case is a half-wave bump, for which $m=1$,

$$
\begin{equation*}
R_{1}=\frac{1}{4} \pi \varepsilon, \quad R_{2}=\left(1+\frac{1}{4} i \pi\right) \varepsilon^{2}+R_{2 k} \tag{5.5a,b}
\end{equation*}
$$

and $\quad R_{2 k}=\frac{1}{2} \varepsilon^{2} \mu_{0}\left[\operatorname{coth}\left(3 k_{0} h_{0}\right)+\operatorname{coth}\left(k_{0} h_{0}\right)-\frac{4}{3}\left(k_{0} h_{0}\right)^{-1}\right]$.
Adding (5.5a) and (5.5b), we place the resulting second-order approximation in the form

$$
\begin{align*}
R=\frac{1}{4} \pi \varepsilon+\varepsilon^{2}\left\{1+\frac{1}{4} \mathrm{i} \pi+\frac{1}{2}\left[1+\left(2 k_{0} h_{0}\right)^{-1}\right.\right. & \left.\sinh 2 k_{0} h_{0}\right] \\
& \left.\times\left[k_{0} h_{0}\left(\operatorname{coth} 3 k_{0} h_{0}+\operatorname{coth} k_{0} h_{0}\right)-\frac{4}{3}\right]\right\} . \tag{5.7}
\end{align*}
$$

But if $m \varepsilon=O(1)$ the second-order approximation is inadequate for the calculation of the peak (Bragg-resonant) reflection coefficient, and it is necessary to include the third-order contribution of the propagated mode. This calculation is sketched in the Appendix and yields

$$
\begin{equation*}
R_{3}=\varepsilon^{3}\left[-\frac{1}{3}\left(\frac{1}{4} m \pi\right)^{3}+\frac{13}{8} i\left(\frac{1}{4} m \pi\right)^{2}+O\left(\frac{1}{4} m \pi\right)\right], \tag{5.8}
\end{equation*}
$$

in which the neglected terms are of the same order as the trapped-mode component $R_{3 k}$. Adding the dominant parts of $(5.1 a),(5.1 b)$ for m large and even, and (5.8), we obtain

$$
\begin{equation*}
R=R_{1}-\frac{1}{3} R_{1}^{3}+\mathrm{i} \varepsilon\left(R_{1}+\frac{13}{8} R_{1}^{2}\right) \tag{5.9}
\end{equation*}
$$

The real part of (5.9) comprises the first two terms in the R_{1} expansion of Mei's (1985) asymptotic ($\beta l \uparrow \infty$ with R_{1} fixed) approximation ($x=0$ in Mei’s (3.24))

$$
\begin{equation*}
R \sim \tanh R_{1} \tag{5.10}
\end{equation*}
$$

but the imaginary part differs significantly from, Mei's M.
Numerical values of the above approximations for the half-wave bump and the experimental configurations of Davies \& Heathershaw are given in table 1. The
experimental values of $\left(k_{0} a / \varepsilon\right)^{2}$ are small, as appears to be required for the neglect of nonlinearity (see last paragraph in $\S 1$), for $m=4$ and 8 , but not for $m=20$; however, the coefficient of $k_{0}^{2} a^{2}$ in the correction for nonlinearity typically is small, and Davies \& Heathershaw's results do not appear to be amplitude dependent.

This work was supported in part by the Division of Ocean Sciences of the National Science Foundation, NSF Grant OCE95-01508 and by the Office of Naval Research Grant N00014-92-J-1171.

Appendix. Reduction of R_{3}

The reduction of Q_{3} and R_{3} follows that of Q_{2} and R_{2} in $\S 3$ and yields

$$
\begin{equation*}
Q_{3}(x)=h_{1}(x) \partial_{x} \int_{0}^{l} G(x-\xi) Q_{2}^{\prime}(\xi) \mathrm{d} \xi+\frac{1}{6} \mathrm{i} k_{0}^{3} h_{1}^{3}(x) \mathrm{e}^{\mathrm{i} k_{0} x} \tag{A1}
\end{equation*}
$$

and

$$
\begin{align*}
R_{3}=-\left(\mathrm{i} k_{0}\right)^{-1} K_{0} \int_{0}^{l} \mathrm{~d} x \int_{0}^{x} G(x-\xi)\left[Q_{1}^{\prime}(x) Q_{2}^{\prime}(\xi)\right. & \left.+Q_{1}^{\prime}(\xi) Q_{2}^{\prime}(x)\right] \mathrm{d} \xi \\
& +\frac{1}{6} k_{0}^{3} K_{0} \int_{0}^{l} h_{1}^{3}(x) \mathrm{e}^{2 i k_{0} x} \mathrm{~d} x . \tag{A2}
\end{align*}
$$

We restrict further consideration to the Bragg-resonant sinusoidal patch, for which h_{1} is given by (4.1) and $k_{0} l=\frac{1}{2} \beta l=\frac{1}{2} m \pi$, and neglect the third-order contributions of the trapped modes. Substituting the k_{0} component of G from (2.9b) into (3.3) and invoking $k_{0}=\frac{1}{2} \beta$, we obtain

$$
\begin{equation*}
Q_{2}(x)=\frac{1}{2} i b^{2} K_{0} \sin \beta x E^{\prime}(x), \tag{A3}
\end{equation*}
$$

where

$$
\begin{equation*}
E(x)=\frac{1}{2} \mathrm{i} \beta(l-x) \mathrm{e}^{-\mathrm{i} k_{0} x}-\left(1-\cos \beta x-\frac{1}{2} \mathrm{i} \sin \beta x\right) \mathrm{e}^{\mathrm{i} k_{0} x} . \tag{A4}
\end{equation*}
$$

The corresponding approximation to R_{3}, obtained by integrating the terms in Q_{1}^{\prime} and Q_{2}^{\prime} by parts and substituting Q_{1} and Q_{2} from (3.1) and (A 3), is

$$
\begin{align*}
R_{3}= & \frac{1}{16}\left(k_{0} b\right)^{3} K_{0} l-2\left(\mathrm{i} k_{0}\right)^{-1} K_{0}^{2} \int_{0}^{l} Q_{1}(x) Q_{2}(x) \mathrm{d} x \\
& -K_{0}^{2} \int_{0}^{l} \mathrm{e}^{\mathrm{i} k_{0} x} \mathrm{~d} x \int_{0}^{x} \mathrm{e}^{-\mathrm{i} k_{0} \xi}\left[Q_{1}(x) Q_{2}(\xi)+Q_{1}(\xi) Q_{2}(x)\right] \mathrm{d} \xi . \\
= & \varepsilon^{3}\left[-\frac{1}{3}\left(\frac{1}{4} m \pi\right)^{3}+\left(\frac{77}{64}+\frac{1}{8} \mu_{0}^{2}\right)\left(\frac{1}{4} m \pi\right)+\frac{13}{8} \mathrm{i}\left(\frac{1}{4} m \pi\right)^{2}+\frac{1}{3} \mathrm{i} \sin ^{2}\left(\frac{1}{2} m \pi\right)\right] .
\end{align*}
$$

REFERENCES

Abramowitz, M. \& Stegun, I. A. 1964 Handbook of Mathematical Functions. US National Bureau of Standards.
Chamberlain, P. G. \& Porter, D. 1995 The modified mild-slope equation. J. Fluid Mech. 291, 393-407.
Davies, A. G., Guazzelli, E. \& Belzons, M. 1989 The propagation of long waves over an undulating bed. Phys. Fluids A 1, 1331-1340.
Davies, A. G. \& Heathershaw, A. D. 1984 Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 144, 419-443.
Havelock, T. H. 1929 Forced surface waves on water. Phil. Mag. 8, 569-576.
Kirby, J. T. 1986 A general wave equation for waves over rippled beds. J. Fluid Mech. 162, 171-186.

Long, R. B. 1973 Scattering of surface waves by an irregular bottom. J. Geophys. Res. 78, 7861-7870.
Mei, C. C. 1983 The Applied Dynamics of Ocean Surface Waves. Wiley-Interscience.
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315-335.
Miles, J. W. \& Chamberlain, P. G. 1998 Topographical scattering of gravity waves. J. Fluid Mech. 361, 175-188.
O’Hare, T. J. \& Davies, A. G. 1992 A new model for surface-wave propagation over undulating topography. Coastal Engng 18, 251-266.
Suh, K. D., Lee, C. \& Park, W. S. 1997 Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engng 32, 91-117.

