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On gravity-wave scattering by non-secular changes
in depth
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The reflection of a straight-crested gravity wave by a non-secular perturbation h
"
(x) in

depth relative to an otherwise flat bottom of depth h
!

is calculated through an
expansion in ε£ h

"
}h

!
. Explicit results are developed up to second order for the

sinusoidal patch h
"
¯®b sin(mπx}l ), 0!x! l, and reduced for Bragg resonance.

Trapped modes are absent at first order but appear at second order and contribute
O(ε#)}O(ε$) to the maximum (Bragg-resonant) reflection coefficient for odd}even m. A
third-order approximation that includes the dominant contributions of the third-order
components of the resonant peak of the reflection coefficient for large m, but neglects
the trapped modes, predicts resonant peaks that agree with the values measured by
Davies & Heathershaw (1984).

1. Introduction

Linear gravity waves of velocity potential φ, free-surface displacement ζ and
frequency ω in water of ambient depth h(x) are described by

[φ(x, z, t), ζ(x, t)]¯Re²[Φ(x, z), i(ω}g)Φ(x, 0)] e−iωt ´, (1.1)

where the complex potential Φ satisfies

~#ΦΦ
zz

¯ 0 (®h! z! 0), (1.2)

Φ
z
¯ κΦ (z¯ 0), Φ

z
¡h[¡Φ¯ 0 (z¯®h), (1.3a, b)

x3 (x, y), ¡3 (¥
x
,¥

y
), κ3ω#}g, (1.4a–c)

and subscripts signify partial differentiation. We seek the solution of (1.2)–(1.4) for

h(x)¯ h
!
h

"
(x) (0!x! l ), h

"
¯ 0 in x% 0 or x& l, h

"
}h

!
¯O(ε),

(1.5a–c)
through the expansion (¥

y
¯ 0 throughout the subsequent development)

Φ¯Φ
!
Φ

"
Φ

#
I, Φ

n
¯Φ

n
(x, z)¯O(εn), (1.6a, b)

where Φ
!
¯ eik!x cosh [k

!
(zh

!
)] (1.7)

describes a straight-crested incident wave in water of uniform depth h
!
. The

wavenumber k
!

is the positive-real root of the dispersion equation

k tanhkh
!
¯ κ. (1.8)

The solution of (1.2)–(1.7) comprises a family of trapped modes, which are
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evanescent for rxrj h
!
, and a propagated mode of wavenumber k

!
with incident,

reflected and transmitted components. The latter yield the asymptotic approximations

Φ(x, z)C (eik!xR e−ik!x) cosh[k
!
(zh

!
)] (x}h

!
X®¢) (1.9a)

and Φ(x, z)CT eik!x cosh[k
!
(zh

!
)] (x}h

!
W¢), (1.9b)

wherein the reflection and transmission coefficients R and T admit the expansions

R¯R
"
R

#
I, T¯ 1T

"
T

#
I, R

n
,T

n
¯O(εn). (1.10a–c)

The first-order (truncation at n¯ 1) problem has been solved by Long (1973) for
random h

"
(x) and by Davies & Heathershaw (1984) for arbitrary h

"
(x) ; see also Mei

(1985) and Kirby (1986). Davies & Heathershaw (1984) compare their solution with
measurements for a sinusoidal ripple bed and find that it is adequate for reflection
coefficients smaller than about 0.5 but may overestimate reflection for Bragg resonance.
They introduce an ad hoc ‘correction’ to represent higher-order effects, but this is
superseded by more accurate calculations (Davies, Guazzelli & Belzons 1989; O’Hare
& Davies 1992).

I consider here the construction of higher-order approximations and the con-
tributions of the trapped modes. In §2, I obtain (through Fourier transformation) a
sequential solution of the boundary-value problems for the Φ

n
. In §3, I calculate the

corresponding reflection and transmission coefficients to second order and then, in §4,
consider the example of a sinusoidal patch, h¯ h

!
®b sinβx (0%x% l ), β¯mπ}l. The

second-order approximation may be inadequate for Bragg resonance (2k
!
¯β) if m is

large and even (in which case R
#

proves to be approximately in quadrature, whereas
R

$
is approximately in phase, with R

"
), and in §5 I develop a third-order approximation

to the Bragg-resonant reflection coefficient that is adequate for mb}2h
!
¯O(1) and

agrees well with Davies & Heathershaw’s (1984) measured resonant peaks for m¯ 4,
8 and 20 (2, 4 and 10 in their notation).

Nonlinearity would alter the linear approximation to R by A3 1O(k#

!
a#), where

a is the amplitude of the incident wave. This factor must be compared with R
$
}R

"
¯

1O(ε#) for the present (§5) approximation to the Bragg reflection coefficient, which
therefore appears to require (k

!
a}ε)#i 1 for its validity ; however, the coefficient of

k#

!
a# in A presumably is much smaller than that of ε# in R

$
}R

"
.

The present approximation, in which the expansion parameter is a measure of the
variation in depth, may be compared with the mild-slope (Mei 1983, §3.5) and modified
mild-slope approximations (Chamberlain & Porter 1995; Miles & Chamberlain 1998),
in which the expansion parameter is a measure of the bottom slope. See O’Hare &
Davies (1992) and Suh, Lee & Park (1997) for more extensive lists of references. The
present approximation is somewhat simpler, and may be more efficient, than these
mild-slope approximations; however, it does not accommodate secular changes in
depth, is less efficient than Mei’s (1985) asymptotic approximation for a long (mj 1)
ripple bed, and is less powerful than some of the more sophisticated methods cited by
O’Hare & Davies (1992) and Suh et al. (1997).

2. Fourier-transform solution

Substituting (1.6) into (1.2), (1.3a) and the expansion of (1.3b) about z¯®h
!
, we

obtain the sequence (for n¯ 1, 2,I)

Φ
nxx

Φ
nzz

¯ 0 (®h
!
! z! 0), (2.1)

Φ
nz

¯ κΦ
n

(z¯ 0), Φ
nz

¯®Q
nx

(z¯®h
!
), (2.2a, b)
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where
Q

"
¯ h

"
Φ

!x
, Q

#
¯ h

"
Φ

"x
®"

#
h#

"
Φ

!xz
,

Q
$
¯ h

"
Φ

#x
®"

#
h#

"
Φ

"xz
"

'
h$

"
Φ

!xzz
,I (z¯®h

!
).

5

6
7

8

(2.3)

The Φ
n

then may be determined sequentially, starting from (1.7) for Φ
!
.

Guided by Havelock’s (1929, §5) treatment of surface-forced gravity waves, we
construct the solution of the bottom-forcing problem (in which the Q

n
(x) may be

regarded as fluid inputs) posed by (2.1) and (2.2) through the finite Fourier-transform
pair

Ψ(x,k)¯&!

−h!

Φ(x, z) cos [ik(zh
!
)] dz (2.4a)

and Φ(x, z)¯ 23
k

K(k)Ψ(x,k) cos[ik(zh
!
)], (2.4b)

where K(k)¯
k#®κ#

(k#®κ#) h
!
κ

, (2.5)

and the summation is over the positive-real root k
!

and the infinite, discrete set of
positive-imaginary roots, k¯ iE, of (1.8). Transforming (2.1), reducing the transform
of Φ

nzz
through integration by parts, and invoking (2.2a, b), we obtain

Ψ
nxx

k#Ψ
n
¯®Q!

n
(x), (2.6)

the solution of which, subject to finiteness and radiation conditions for xU³¢, is
given by (recall that Q

n
¯ 0 outside of 0!x! l )

Ψ
n
(x,k)¯®"

#
(ik)−"& l

!

Q!
n
(ξ) eik rx−ξr dξ. (2.7)

We cast the inverse transform of Ψ
n
, as determined by (2.4b), in the Green’s-

function form

Φ
n
(x, z)¯& l

!

G(x®ξ, z)Q!
n
(ξ) dξ (2.8a)

¯ ¥
x& l

!

G(x®ξ, z)Q
n
(ξ) dξ, (2.8b)

where (2.8b) follows from (2.8a) through integration by parts and the invocation of
Q

n
(0)¯Q

n
(l )¯ 0 (which follow from h

"
(0)¯ h

"
(l )¯ 0),

G(x, z)¯®3
k

(ik)−"K(k) eik rxr cos[ik(zh
!
)] (2.9a)

¯®(ik
!
)−"K

!
eik!

rxr cosh[k
!
(zh

!
)]3

E

E−"K(iE) e−E rxr cos[E(zh
!
)], (2.9b)

and K
!
3K(k

!
). The E summation comprises the trapped modes, which are evanescent

for rxrj h
!
. The k

!
term represents the propagated mode, and the comparison of its

asymptotes (for xUy¢) with (1.9a, b) yields

R
n
¯K

!&
l

!

Q
n
(x) eik!xdx, T

n
¯®K

!&
l

!

Q
n
(x) e−ik!xdx. (2.10a, b)
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3. Second-order results

Proceeding through the sequence developed in §2, starting from the substitution of
Φ

!
(1.7) into (2.3), and setting z¯®h

!
, we obtain

Q
"
(x)¯ ik

!
h
"
(x) eik!x, (3.1)

R
"
¯ ik

!
K

!&
l

!

h
"
(x) e#ik!xdx, T

"
¯®ik

!
K

!&
l

!

h
"
(x) dx, (3.2a, b)

Q
#
(x)¯ h

"
(x) ¥

x& l

!

G(x®ξ)Q!

"
(ξ) dξ, (3.3)

R
#
¯ (ik

!
)−"K

!&
l

!

Q
"
(x) dx ¥

x& l

!

G(x®ξ)Q!

"
(ξ) dξ (3.4a)

¯®(ik
!
)−"K

!&
l

!

& l

!

G(x®ξ)Q!

"
(x)Q!

"
(ξ) dξdx (3.4b)

¯®2(ik
!
)−"K

!&
l

!

Q!

"
(x) dx&x

!

G(x®ξ)Q!

"
(ξ) dξ, (3.4c)

T
#
¯ (ik

!
)−"K

!&
l

!

Q{
"
(x) dx ¥

x& l

!

G(x®ξ)Q!

"
(ξ) dξ (3.5a)

¯®(ik
!
)−"K

!&
l

!

& l

!

G(x®ξ)Q{ !
"
(x)Q!

"
(ξ) dξdx (3.5b)

¯®(ik
!
)−"K

!&
l

!

dx&x

!

G(x®ξ) [Q!

"
(x)Q{ !

"
(ξ)Q{ !

"
(x)Q!

"
(ξ)] dξ, (3.5c)

wherein Q
"
(0)¯Q

"
(l )¯ 0 has been invoked after the partial integrations, the reduction

of (3.4b) to (3.4c) follows from the identity G(x®ξ)¯G(ξ®x), and Q{
"
is the complex-

conjugate of Q
"
; Q

$
and R

$
are given in the Appendix.

4. Sinusoidal patch

Consider, for example,

h
"
¯®b sinβx (0!x! l ), βl¯mπ (4.1a, b)

(m is a positive integer), the substitution of which into (3.2) and (3.4) yields

R
"
¯ iεk

!
β0e#ik!l cosβl®1

β#®4k#

!

1 (4.2)

and R
#
¯ 2iε#(k

!
}K

!
)3

k

K(k)H(β,k,k
!
), (4.3)

where ε3K
!
b¯ b}[h

!
(2k

!
)−" sinh 2k

!
h
!
], (4.4)

H¯ (ik)−"& l

!

eikx (eik!x sinβx)«dx&x

!

e−ikξ (eik!
ξ sinβξ)«dξ (4.5a)

¯& l

!

eikx (eik!x sinβx)«dx9(ik)−" e−ikx (eik!x sinβx)&x

!

ei(k!−k)ξ sinβξdξ: (4.5b)
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¯& l

!

ei(k!+k)x (ik
!
sinβxβ cosβx) dx&x

!

ei(k!−k)ξ sinβξdξ (4.5c)

¯β#[β#®(k®k
!
)#]−" ²"

%
(ik

!
)−"(1®e#ik!l )

ik[β#®(kk
!
)#]−" [ei(k+k!)l cosβl®1]´, (4.5d )

and we have invoked sinβl¯ 0 and cos 2βl¯ 1. Substituting (4.5d ) into (4.3),
separating the propagated (k¯k

!
) and trapped (k¯ iE) terms, and invoking (4.2), we

obtain
R

#
¯ 2iε(k

!
}β)R

"
"

#
ε#(1®e#ik!l)R

#
E, (4.6)

where

R
#
E ¯ "

#
ε#(β#}K

!
)3

E

K(iE) ( 1®e#ik!l

β#(Eik
!
)#


4ik

!
E[1®e−El+ik!l cosβl ]

rβ#(Eik
!
)#r# * . (4.7a)

¯ ε#(β#}K
!
) ei(k!l−

π/#) Im3
E

K(iE) 9eik!l®e−El cosβl

β#(Eik
!
)# : , (4.7b)

and (4.7b) follows from (4.7a) through the identity

4ik
!
E

rβ#(Eik
!
)#r#

¯
1

β#(E®ik
!
)#

®
1

β#(Eik
!
)#

(4.8)

and the reality of
K(iE)¯ (E#κ#)}[(E#κ#) h

!
®κ]. (4.9)

The series in (4.7b) may be summed by invoking the rigid-lid approximations
ED sπ}h

!
(s¯ 1, 2,I) and K(iE)D 1}h

!
for the trapped modes and neglecting the

exponentially small terms to obtain

R
#
E ¯ ε#(β#}K

!
) ei(k!l−

π/#) Im (eik!lS ), (4.10a)

S33
E

K(iE)

β#(Eik
!
)#

¯
1

2iπβ 3
¢

s="

9 1

si(h
!
}π)(k

!
®β)

®
1

si(h
!
}π)(k

!
β):

¯ (2iπβ)−"²ψ[1i(h
!
}π)(k

!
β)]®ψ[1i(h

!
}π)(k

!
®β)]´, (4.10b)

where ψ is the digamma function (Abramowitz & Stegun 1964, hereinafter referred to
as AS, §6.3).

5. Bragg resonance

Bragg resonance occurs for k
!
l¯ "

#
βl¯ "

#
mπ, for which (4.2) and (4.6) reduce to

R
"
¯ "

%
mπε, R

#
¯ (sin# "

#
mπ"

%
imπ) ε#R

#
E, (5.1a, b)

and the approximation (4.10) yields

R
#
E ¯ "

#
im−"mε#(K

!
l )−" Im (im−"9ψ01i(m"

#
)
h
!

l 1®ψ01®i(m®"

#
)
h
!

l 1:* (5.2a)

¯ im−" ε#(µ
!
}π) Im ²im−"[ψ(1iµ

+
)®ψ(1®iµ

−
)]´, (5.2b)

where µ
!
3k

!
}K

!
¯k

!
h
!
"

#
sinh 2k

!
h
!
, µ³ 3 02m³1

mπ 1k
!
h
!
. (5.3a, b)

Letting m be either odd or even and invoking AS, §6.3 (13) and (17), we obtain

R
#
E ¯ "

#
ε#µ

!
[coth (πµ

+
)coth (πµ

−
)®(πµ

+
)−"®(πµ

−
)−"] (modd) (5.4a)
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m 1 4 8 20

b}h
!

"

$
0.320 0.320 0.160

k
!
h
!

"

#
0.491 0.491 0.982

ε 0.153 0.148 0.148 0.058
R

"
(5.1a) 0.120 0.464 0.927 0.904

R
#
E (5.4) 0.0077 O (10−%) O (10−%) O (10−%)

R
#

(5.1b) 0.031i.018 0.069i 0.138i 0.052i
rR

"
R

#
r 0.152 0.469 0.937 0.906

rR
"
R

#
R

$
r (5.9) 0.155 0.446 0.746 0.670

tanh R
"

0.119 0.433 0.729 0.718
rRr

DH
— 0.45 0.72 0.68

(k
!
a)

DH
— 0.027 0.027 0.054

T 1. Peak reflection coefficient for the sinusoidal patch (4.1), as calculated in §5 and
measured by Davies & Heathershaw (1984) (DH).

or R
#
E ¯ iε#(µ

!
}π)(µ#

+
®µ#

−
) 3

¢

n="

n

(n#µ#
+
)(n#µ#

−
)

(µ even). (5.4b)

It follows from (5.1) and (5.4) that if m is even R
#
is in quadrature with R

"
and therefore

contributes only O(ε$) to rRr. But if m is odd R
#
has an in-phase (with R

"
) component

and contributes O(ε#) to rRr.
The second-order approximation described by (5.1)–(5.4) is adequate for mεi 1.

The simplest case is a half-wave bump, for which m¯ 1,

R
"
¯ "

%
πε, R

#
¯ (1"

%
iπ) ε#R

#
E, (5.5a, b)

and R
#
E ¯ "

#
ε#µ

!
[coth (3k

!
h
!
)coth (k

!
h
!
)®%

$
(k

!
h
!
)−"]. (5.6)

Adding (5.5a) and (5.5b), we place the resulting second-order approximation in the
form

R¯ "

%
πεε#²1"

%
iπ"

#
[1(2k

!
h
!
)−" sinh 2k

!
h
!
]

¬[k
!
h
!
(coth 3k

!
h
!
cothk

!
h
!
)®%

$
]´. (5.7)

But if mε¯O(1) the second-order approximation is inadequate for the calculation
of the peak (Bragg-resonant) reflection coefficient, and it is necessary to include the
third-order contribution of the propagated mode. This calculation is sketched in the
Appendix and yields

R
$
¯ ε$[®"

$
("
%
mπ)$"$

)
i("
%
mπ)#O("

%
mπ)], (5.8)

in which the neglected terms are of the same order as the trapped-mode component
R

$
E. Adding the dominant parts of (5.1a), (5.1b) for m large and even, and (5.8), we

obtain
R¯R

"
®"

$
R$

"
iε(R

"
"$

)
R#

"
). (5.9)

The real part of (5.9) comprises the first two terms in the R
"
expansion of Mei’s (1985)

asymptotic (βlW¢ with R
"

fixed) approximation (x¯ 0 in Mei’s (3.24))

RC tanhR
"
, (5.10)

but the imaginary part differs significantly from, Mei’s M.
Numerical values of the above approximations for the half-wave bump and the

experimental configurations of Davies & Heathershaw are given in table 1. The
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experimental values of (k
!
a}ε)# are small, as appears to be required for the neglect of

nonlinearity (see last paragraph in §1), for m¯ 4 and 8, but not for m¯ 20; however,
the coefficient of k#

!
a# in the correction for nonlinearity typically is small, and Davies &

Heathershaw’s results do not appear to be amplitude dependent.

This work was supported in part by the Division of Ocean Sciences of the National
Science Foundation, NSF Grant OCE95-01508 and by the Office of Naval Research
Grant N00014-92-J-1171.

Appendix. Reduction of R
$

The reduction of Q
$

and R
$

follows that of Q
#

and R
#

in §3 and yields

Q
$
(x)¯ h

"
(x) ¥

x& l

!

G(x®ξ )Q!

#
(ξ ) dξ"

'
ik$

!
h$

"
(x) eik!x (A 1)

and

R
$
¯®(ik

!
)−"K

!&
l

!

dx&x

!

G(x®ξ ) [Q!

"
(x)Q!

#
(ξ )Q!

"
(ξ )Q!

#
(x)] dξ

"

'
ik$

!
K

!&
l

!

h$

"
(x) e#ik!xdx. (A 2)

We restrict further consideration to the Bragg-resonant sinusoidal patch, for which
h
"

is given by (4.1) and k
!
l¯ "

#
βl¯ "

#
mπ, and neglect the third-order contributions of

the trapped modes. Substituting the k
!

component of G from (2.9b) into (3.3) and
invoking k

!
¯ "

#
β, we obtain

Q
#
(x)¯ "

#
ib#K

!
sinβxE «(x), (A 3)

where E(x)¯ "

#
iβ(l®x) e−ik!x®(1®cosβx®"

#
i sinβx) eik!x. (A 4)

The corresponding approximation to R
$
, obtained by integrating the terms in Q!

"
and

Q!

#
by parts and substituting Q

"
and Q

#
from (3.1) and (A 3), is

R
$
¯ "

"'
(k

!
b)$K

!
l®2(ik

!
)−"K#

! &
l

!

Q
"
(x)Q

#
(x) dx

®K#

! &
l

!

eik!xdx&x

!

e−ik!
ξ [Q

"
(x)Q

#
(ξ )Q

"
(ξ )Q

#
(x)] dξ. (A 5a)

¯ ε$[®"

$
("
%
mπ)$(((

'%
"

)
µ#

!
)("

%
mπ)"$

)
i("
%
mπ)#"

$
i sin#("

#
mπ)]. (A 5b)
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